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SECTION L. GENERAL DESCRIPTION

I
1.1 INTRODUCTION-

Present methods *for predicting internal wave fields produced by

objects moving in stratified media are limited in their physical realism,

flexibility, and economy. Recent efforts to define standards for internal-

wave prediction have helped to clarify the shortcomings of existing

techniques, which occur in one or more of the following areaq:

0 Modelling the dynamics of turbulent ,-ake &,uwth, buoyancy trans-

port, and wake collapse.

"* Modelling the propagation of radiated internal waves in a medium

of arbitrary buoyancy stratification.

* Maintaining numerical precision and stability in a field calcula-

tion encompassing a wide range of horizontal and vertical length

scales, at acceptable computing cost and speed.

Some of these shortcomings are fundamental and unavoidable, while

some are accidental, depending on the approach used. For example, a

three-dimensional finite-difference calculation, superior for near-field

flow and wake dynamics, is severely limited in the upper length and time

scales it can achieve, simply because of limits on available computer

storage, speed, and accuracy. On the other hand, limitations in existing

analytic approaches can be overcome. One such approach now in use by

TRW employs a three-layer model of density stratification that is too

simplified to reproduce wave propagation on real thermoclines, although

it is perfectly adequate for its original purpose, which was to provide

estimates of field magnitudes and shapes [2].

-t1
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A more general analytic code can-be-envisioned, one- based on a

Fourier/normal-mode expansion of the linearized-field equations- for an

arbitrary profile of stratified buoyancy, that would meet the require-

ments for generality, scale and efficiency. Like its predecessors,

however, stich a code would have to depend on parametric source models to

represent the excitation of internal waves by the moving body and col-

lapsing wake, source models that will have to be devised and validated

elsewhere.

A two-fold approach has been suggested [3] in which an efficient code

of the analytic type is developed for routine simtulations,-While at the

same time a "research" code of the finite-difference type is developed

to provide validated source models for the anaiytic-code.

This two-volume -report describes a-prototype analytic code )DIODE,

which has been developed at DA -to provide inexpensive sinmulations of

radiated internal-wave fields in a variety of realistic thermoclines.

XMODE represents an improvement over existing codes in two important

respects: it contains an efficient eigenfunction generator for the normal-

mode analysis of an arbitrary input density profile, and it abandons the

stationary-phase method of field calculation in favor of a more nearly

exact, and very rapid, inversion in rectangular coordinates via the Fast

Fourier Transform [4].

Volume I ccntains a general description of )MODE and a detailed

derivation of the algorithm for representative body and wake sources.

Volume II is a user's guide to )DODE, containing a description of the

computer routines, operating instructions, and FORTRAN listings.
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Some of the procedures and computer subroutines, those having to

do with eigenfunction generation, are identical to those in the computer

code ZMODE, which is an integral part of XMODE and which has been described

fully in an earlier report [1]. This material is not duplicated here;

potential users of )DIODE ,hould obtain Reference 1 as a companion

SI volume to the present report.

1.2 OUTLINE OF METHOD

The algorithm used by XMODE is based on a Fourier/normal-mode
I A expansion of the linearized equations of stratified flow, with simple

local sources. As in other formulations the transformed solution is

"obtained as an algebraic combination of eigenfunction amplitudes and

"dispersion quantities. However, the present formulation is distinct

in that the transform is inverted in rectangular coordinates, first along

the x-direction (track) by analytic means, then along the y-direction

(crosstrack) by a numerical Fast Fourier Transform (FFT). The partial

crosstrack transforms obtained in the first step for each normal mode

are complex functions whose amplitudes are invariant with respcct to

Sand whose complex phases are linearly proportional to x. This property

allows the partial transforms to oe assembled rapidly from independent

amplitude and phase factors computed and stored ahead of time. At each
i• value of x the numerical phase-and-sum operatien is, for twenty modes,

no more time-consuming than the FFT computation of the crosstrack field,

• so that the full efficiency of the FFT is realized.

1.3 ADVANTAGES AND LIMITATIONS

The logic of XMODE is designed for efficient computation of radiated

internal wave field properties at the ocean surface, or on a ho{Izontal

plane (x-y) at any specified depth. Computation of the field on the ver-

tical crossplane (y-z) is somewhat less efficient. and computation on a

vertical plane (x-z) is least efficient of all. All pofats in the plane

3
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are computed with equal precision; unlike previously used stationary-

phase methods, the FFT in rectangular coordinates has no difficulty with

points on or near the coordinate axes (x = 0 and y = 0). originating on

the source.

Other specific assutijptions and features are:

4 Linearized fluid equations with dipole body and quadrupole wake

sources.

(A Choice of field quantity among vertical displacement, scalir
straini x- and y- components of velocity, and scalar strain

rate.

* No ambient shear flow.

t No vertical momentum in wake.

i Source speed must exceed maximuim ambient phase speed (Super-

Froude source).

I
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SECTION 2. SPECIFICATIONS OF THE XMODE CODE AND

SAMPLE CALCULATIONS

2.1 RESOLUTION AND DYNAMIC RANGE

Each crosstrack field contains 256 physical resolution elements Ay,

field half-width = 256 • Ay;

the width and resolution size are somewhat adjustable, but Ay, which should

approximate the reciprocal of the uipper wavenumber limit in the ZMODE cal-

culation, is constrained by numerical stability considerations to

S-Ay Za /15

where Z is the total depth of the active thermocline. For Z = 300 m
a a

this permits a crosstrack resolution of 20 m and a field half-width of

5120 m. The number of points calculated per crosstrack field is optional

among 256, 512, 1024, and 2048, for redundant sampling at multiples of

2, 4, and 8 times the Nyquist frequency Ay

* Any number of equally-spaced crosstrack fields can be requested in

a given calculation, with an-arbit:rary track spacing Ax.

The maximum number of normal modes is 20, so that the effective

vertical resolution is AZ = 1 /20.

Since the source transforms are generated directly from analytic

formulas and stored in floating-point format the effective dynamic range

of the tabulated transforms is very large, limited only by the eigenmode

"convergence precision of ZMODE, which is in the neighborhood of 10-20

or double the eigenvalue c' .vergence precision.
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Errors introduced by the finite, discrete FFT are 6f two simple types:,

accumulated roundoff, which is a few times machine precision, and aliasing,

which superposes fields from image sources spaced at aultiples of the field

width from the actual track. The image fields are negligible so long as

the simulation time is short co -ared to the time required for the fastest

propagating field components to traverse a half-width; when this artificial

periodicity is taken into account, the images will not affect estimates of the
-13

spectral content, which can be recovered with a precision of 10

2.2 CORE REQUIREMENTS AND EXECUTION TIMES

TI XMODE source deck contains 1120 cards. On the CDC 7600, both

the RUN compiler and the .FTN optimizing compiler produce an object code

occupying less than 60,000 words (162,000 octal).

The execution tim:s are proportional to the number of modes requested

in a calculation. The values listed below are for the full 20 modes.

Execution Times, Seconds

Procedure Module RUN FTN

* Dispersion Tables ZMODE 11.2 6.6
and Mode Amplitudes

* Recalculate with ZMODE 4.1 2.5
new Source Depth

* Crnsstrack Source SOURCE 0.02 0.01

Transforms

o With Printer Plots SOURCE 0.30 0.38

a Radiated field on XFIELD 6.4 5.3
100(x) by 1024(y)
array

6
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Particularly noteworthy is the efficiency achieved by the XFIELD

module. Of the 64 milliseconds computation time per 1024-point crosstrack

field (RUN c6opiler),- half is devoted to- the 20-mode phase-and-sum, and

half to the FFT.

The computation tine of the dispersion tables, the most time-consuming

operation, will depend also on the chosen number of eigenmode integration

steps, the convergence precision, and tabular wavenumber density; the values

200, 10-10, and 41 used in the test case are felt to be typical for deep-

ocean calculations. For a series of field calculations with differing source

speed or field type, a single dispersion calculation suffices. A change in

source or field depth requires a new calculation of ne eigenfunctions so

that the mode amplitudes at the new depths can be tabulated. When converged

eigenvalues are already present the eigenvalue search can be bypassed,

shortening the (RUN) time from 11.2 to 4.1 seconds, as indicated.

* 2.3 SAMPLE CALCULATIONS

The sample calculations illustrated below simulate a source 60 meters
- I

deep moving at 2.0 kt and 16 kt. The depth chosen places the source

15 meters below the sharply eroded boundary of the test thermocline,
shown in Figure 2-1, which has been taken from data obtained on the

oceanographic research vessel FLIP. The corresponding profile of Vaisala

*. frequency and the ZMODE-derived internal wave dispersion plot are shown

in Figures 2-2 and 2-3.

The crosstrack source transforms cvuapuLed by the SOURCE module are
, available In numerical and graphical output. '-gure 2-4 is a sample of the

numerica? output, which includes transform amplitude versus both the scalar

I.7



wavenumber, k, and its crosstrack component, k . The graphical output,
y

Figures 2-5 and 2-6, plots the squared transform amplitude against k
y

These two examples show the modal energy spectra of crosstrack surface

current f:or the first six modes at 2.0 kt and 16.0 kt respectively. For

greater clarity, the usual XMODE printer-plot subroutine has been replaced

by an equivalent pen-plot routine specific to the RDA plotting hardware.

The low-speed and high-speed cases are dominated respectively by body

and wake excitation; note the flat spectra characteristic of the latter

and peaked spectra of the former, especially in the first mode, where the

low-wavenumber components, whose phase speed is about 1.6 kt, are nearly

resonant at 2.0 kt.

The output of the field calculation in XFIELD is placed directly on

magnetic tape. At the sa-e time XFIELD generates a summary printout, as

in Figure 2-7, containing the peak amplitude and corresponding loca*-ion

for each crossfield. The boundary amplitudes are useful at short simu-

lation times as an indication of the transform roundoff and aliasing errors.

Figures 2-8 and 2-9 are raster plots made directly from the sample

caiculation output tape, depicting crosstrack surface current associated

with the radiated internal waves In modes 1-20. Plot ranges of 0-2.0 km and

0-750 m crosstrack are used for the 2.0 kt and 16.0 kt cases, respectively,

or 40% and 15% of the calculated field, for best rendering of the features.

The downtrack coordinate is in time units, for both cases spanning

5000 sec in increments of 50 sec.

8
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**SQUARED CRUSSRACK TRANSFORM *

CD

K CY/KM KY CY/KH BODY CQ*m)**2 WAKE (G*M)**2

0,000 0,000 0, 1,LJ06LOQ6
9500 *1488 i2,900EW05 1029,4E.06

*1,000 0980 7,000ew-os5 1,lbbe.06
1,500 1,1473 99823EV05 1@086Es06
2,000 1,969 1#158E*04 ,be0
2,500 2 ,;6t 10,~3bkw01 1#Ollk*06
30,000 20963 1*212EW04 96315tw01

1,500 3t461 11108ES014 ,SuQ
"4 j000 3,9591i 9,57SE.05 ,85e.
01,500 14,457 1sq39E*05 5,69OEuOT
5,000 49956s 6116-9EV05 44616EW.07

5,'~00 5.455q,8s0s166'0
8,0000 5 ,95b 3,816E'0 29929E-07
6,500 -bt454 248763EwO5 2,002EWO
7,000 61954 211L42E-05 11196EV07
7,500 44514 1,S77E"'Os 1,392k*07
8.000 74954 2,150Ev05 1,011EVOT
81500 8,1455 8132ZOEO6 88181ER08
9,000 8,955ý 51965E.006 69198E.N08
QO500 9,1455 'J,23SEeWe, M,651E*08

10,000 9,956 219W0"06 3s452E*08
10,500 104456 2,075L~o6 92,5SIk'0
119000 100957 1042se.0 l8ob.0
1I50 I115 9*65BEu07 951,.0E"04
12000O 11195? 614'41E*07 9,00Ek*09
122,'S00 12,458 142219E..07 6,a141kV09
13,000 172,958 2,708E*07 40168kE"09
130500 13,s459 1269SE.'07 t2L0
latoQ0 13,959 11036F.07 1,7144Eov09
114,500 114,460 601i~04EPOO1'0
I5,000 14,960 304144EV08 6*296E*10
15,500 15,1461 10833E908 16487foj0
16s000 15,961 819600'09 181l3EN1O
16,500 160462 3882ME*09 79864ESI-I
17,000 16,962 112b6EN09 20103Etal1
17,500 17,1463 2916OEoI 47261
18,000 17,063 3617SE'.12 7,307LQ14
184500 18,1463 21,163Eu'10 5612eI
19,000 18,9614 69 14OEfaloI sslqEwllI
19,500 19,464 10062EV09 21721EW11
20,000 19,965 1,492EV09 3,95TEall

Figure 2-4. Sample SOURCE Module Printout for Mode 3, Source Speed 2.0 Kt
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**FU~LD OUTPUT SUMM4ARY *

*QUANTITY U'? C
*SPEEbf KT7 16iOOl

*DEPTH# m 60.0

TIME# SEC TRACKi PEAK SIGN1AL AT Y, M 80JNDARY

5ot0 41i,5 1.137c.0LJ 30.0 10806E-10
i00.0 523.1 1.202E-04 30,0 1,381E-10
15d.0 1234,6 1.196E."04 35.0 19211E-10
?00,10 1646,2 t,022Ev00 45.0 1*289E-IP
250.0 20S1,7 4,696E-05 60,0 1,6OIE-l'b
300.0 2469,3 1.100LOUL? 90,0 2.116E-10
350.0 2860.8 10~37E-04 95,0 2.797t10b
400,0 3292.u 1448BE-04 95,0 3,5451.10
050.0 3703.19 t,564E.00 95,0 4,3071.10
50016 U115.4 1,5801.00 100.0 4.9866110
550.0 0527.0 1.5271.04 10010 54502Evl0
600,0 49360' 1,425E-04 105.0 5.758E-'10
650.0 5350.1 1.293E-04 105.0 5.7;2E,,10
700.0 576146 1.043E.04 110,0 5,4701.10
750,0 6173.2 9.,91SE305 116,0 4.79U1.10
80060 6S80,7 8,4091"05 115.0 3,97101.10
850,0 6906,2 7.7071.05 160.0 2,174E-10
900,0 7407,8 7.267E-05 160,0 1,331E*11
950,0 7819,3 6.9066.05 220,0 2.L362E-10
1000.0 8230.9 t%,571E-05 225,0 5.bO9Eol0
1050.0 8602,4 6*376E105 30.0 9.0531.10
1100.0 9054.0 .1,129E-04 30.0 1,388E-09
1150.0 9465,S 1,0001.00 35.0 1.894E-09
j200,0 9877.1 1,7751.00 40,0 2,463E-09
12O0.0 10283.6 14099E"04 05,0 3,096E-09

V1300.0 10700.1 2,361AEw0L S0,0 3,802E-09
1350,0 11111.7 2.553Ew00 50t0 40581EM09
140000 11523,2 2%6831.04 55.0 S,003Ew09
1450,0 1193d,8 2,712E-04 60.0 6,3q4E.09
1500,0 12346,3 2,6561.00 60.0 7.4421-09
1550.0 12757.9 2,5881.,04 65,0 8,592E-09
1600.0 13169.0 2,046E.04 70.0 90852E-09
1650,0 13S81.0 2.3101.00 T0t0 1,123ta08
1700,0 13992.5 ?,1591.0 T0t0 1,273E,08
1750.0 1400000 2.043E.04 70t0 1,038E.05
1800,0 14015.6 16991E,*00 7510 1,619t.08
1850.0 15227.1 24008.004 75.0 1,8181.08
1900.0 15638,7 2,066EM00 73,0 2.0401008
1950.0 16050,2 2,101.00MO 60,0 2,28bE*08
2000,0 16061.8 2,2481.00 8060 2.5621.03
2050,0 16873.3 2,3851.04 8S,0 2,8711e"08
210090 1728498 2,5081.00u 90.0 30218E-08
2190.0 17696.0 2.7301.004 9500 3.610Z.08
2200.0 18101.9 2#908e"04 10010 0.0331.08
2250.0 18519.5 3,0581.00 100,0 Le,55SEW08
2300.0 18931.0 3,212E.04 105,0 5.125108
Mol0. 19342.6 3,282E-04 11060 5.7711.008
?400#.0 19734,1 3,3011.00 110.0 6.5OSEoO8
2450,0 2065.7e 3,3531.00 115,0 7,3351.08
Mo00e 20977.2 3,377Cv,00 115.0 13.27Q0108

Figure 2-7. Sample Summary Printout From XFIELD Module
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SECTION 3. BODY-GENERATED WAVES

Internal waves are generated in an incompressible, ý.Lratified fluid

when a moving object displaces the level surfaces from equilibrium. If

the radiated displacement amplitudes are small, and .f the traverse time

of the object is short compared to the time scale associated with strati-

fication, then the excited field is well described by linearized equations

with a simple set of singular displacement sou":ces. The one approximation

-J that may be unrealistic for certain cases L3 the neglect of ambient cur-

rent shear.

The following normal-mode analysis of body-generated radiation is

similar to the general treatment of Miles [5]. Certain differences of format

are dictated by the rectangular coordinates chosen for ease of comlutation,

and these will be pointed out a,, they are introduced.

3.1 EQUATIONS OF MOTION

The coordinates nLye x (track), y (cross-track), and z (depth, positive

upward, zero at surface). The fluid displacement from equilibrium will be

L I described by a vertical compo•--it 1 and a twc-component vector ý in the

horizontal plane. In the usuial Boussinesq approximation with small dis-

placements and 5mall departures p from equilibrium pressure, the equations

of motion are

-. + N2 (z) = 0 (3-1)
az

+ V'p = 0 (3-2)

where V stands for -he horizontal gradient (D/Dx, D/3y) and N is the

Vaisala frequency associated with the buoyancy stratification

* • • N2  d__p

P dz (3-3)
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Conservation of volume will be modified to incIudk a local set of sources

and sinks describing the moving body,

+ V, = -s(x-vt, y, z) (3-4)
3z

To eliminate the pressure, we app.y a/az to (3-2), V to (3-i), and subtract,

S+ (- 0 5)3z

we can- then eliminate the 1 term by taking the horizontal divergence of

(3-5) and adding the result of (a/az) (2/at 2) on (3-4),

)+ 8 . + N2V-24 = (3-6)
z@

3.2 NORMAL MODE SOLUTION IN FOURIER--°KANSFORM COORDINATES

Using the nota ion (- for the 2-dimensional Fourier transforms in

the horizontal plane
+ ,. f ik'x* (kis = fe r, dxdy (3-7)

and so on, with k'x k x + kyy , and observing that every componant of

a steady solution emanating from the moving source (3--4) must have the

particular time dependence

'(kz) e w, k v, (3-8)

we get from (3-6)

_) = •): (-9)

2 2 2,where k k 4k and s is the transform of s at t 0.
x
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At each value of k, the solution 4 to the inhlmoyeneous equation

above can-be ,obtained as a linear combination of the eigensolutions •,,

of the corresponding homogeneous equation

2 /
~ ) m

which define the freely propagating normal modes. The functions m

vanish at z =0 and at z = b, the ocean bottom. They form a complete

orthogon'al set,

f 0 2N24 dz =6 (3-Il)
J n in nm

-b

over the vertical interval in which N(z) is nonvanishing. In these

defining equations che scalar wavenumber is a continuous parameter upon

which the functions m and the eigenvalues wm depend, a convention opposite
4 m in

to that of hiles' treatment, in which k is the eigenvalue and w the

parameter. The present choice simplifies the logic of the numerical

algorithm.

We now proceed in the usual way to assemble the eigenfunctions into

a Green's function Gk ,(z,zo) for (3-9),
k* 0

+ k G 5(z z (3-12)3Gk, W-2 ko),

Coupled displacements of the free surface are very small and can be
safely neglected. See Phillips [6].
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which in combination with the source transform 3s/3z will yield the

displacement transform •. The identity

22(Z) m( (z ) N (z) 6(Z z (3-13)

M=l

and the property, via equation (3-10),

[' +k2 (N2 2 i m=k2N( 2)l I

together imply

2 00 2

G k,(Z'Z0 ) - k2 2 m2 4m(Z) ým(Zo)" (3-14)
k m=_ W m

To represent the effect of a cylindrically symmetric body we

distribute displacement sources along the submerged track z = y 0,

s(x,y,z) A(x) 6(y) 6(z - zo);

the particular choice

const., jxj < L/2
A(x)

0, Ixl > L/2
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is equivalent to the Rankine ovoid of volume V = AL and dipole length L

(except for the effects of local stratification and the rigid surface

in distorting the boundary streamlines). For this choice, the source

transform term in (3-9) is

sin k L/2
,T(ki,Z) = V L 6' (z - zo) (3-15)

IJ z ~~k XL/2 (-5

where the prime (') is used here and subsequently to denote differentia-

tion by z. For cases of practical interest the values of k
x

present i'a the radiated field will be such that

•J kL
kx L NL
2f 2v <

so that the form factor will be very nearly unity; note that this inequal-

ity must hold also for the distortions in the Rankine ovoid boundary

streamlines to remain small. The body is therefore effectively a point

monopole for displacement (or point dipole for velocity). The equation

for the displacement transform then becomes

[ (2 1)] =V 6'(z- z) (3-16)

so that C is minus V times the derivative with respect to z of the

"Green's function (3-14),
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.z 2(Z) zm (3-17)

The subscripted terms in the above, w m and m , depend on the scalar
4.

magnitude of k, while w is identical to the track component k exceptx
for the scale factor v, w k v.

3.3 CROSSPL.ANE REPRESENTATION

The inversion of the field transform will be carried out in two

steps, first analytically along the k coordinate to produce the "partial

transforms" i,

-(x,ky,z) i(k,z) e-x' dkx, (3-18)
S-CO

then along the k axis

00-ikv

4(xyz) = 1( x,kzy)z) e dk . (3-19)

The second step is carried out numerically witb the Fast kourier

Transform for a succession of x-values at a given z. As will be seen,

the analytic form of the partial transform 4 allows it to be assembled

rapidly at each x from quantities computed and stored ahead of time.

Each term in the modal sum (3-17) for the field transform contains

an integrable singularity along the line of resonance in the t plane

defined by
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Skx V = ((k),

iIx Y (3-20)

k2 -k2 +k2
x y

the finite contribution of these singularities to the inversion integrals

constitutes the radiated, freely propagating field. (Singularities occur

also along the imaginary k axis associated with solutions of the normal-
x 2

mode equation for negative k . These constitute the nonradiated,

exponentially-damped field which is the generalization, for stratified

flow, of the local potential flow around the source.) Dsing cm to denote

the scalar phase speed wmi/k, we note that

x _ in _

k k v

Swhich indicates that no waves for which cm> v can be part of the field.

It can be shown that cm is always a decreasing function of k, so that

the resonance loci have two possible forms, as shown in Figure 3-1:
thwhen v > c (k = 0) the source is "super-Froude" with respect to the m

mode and the locus leaves the origin at an angle of sin (c m(0)/v);

when v < c (0) the locus crosses the k -axis at a finite value corre-
L m x

sponding to c (kx) v, giving rise to a transverse wave system. While

there is no distinction between these two cases in the formalism to

follow the inclusion of transverse waves complicates the numerical pro-

cedures, and the numerical algorithm has been configured for the super-

Froude case only.

To evaluate the radiated contributions we choose the complex integration

contour of (3-18) to lie below the real k axis so that the field will
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vanish for x > 0, and we include the dependence of w m on kx via k (at

fixed k ) in the computation of the residues,
•J y

J(w 2 -- (A- 2  2  md dk

m

2_±2w mv(i -c mc gm/V)

where c - dm /dk (<c ) is the scalar group velocity. The result is
gm gm

SiV J' m3 Cmg/2)-1~ (z)x
. (x,kyZ) a v c 3k(l - c V2) Z m'(Zo) e:i "mx/v,

y~~ ~ ~ 2vI0M8
m

(3-21)

the sum carried out over both signs.

The numerical procedure is based on the observation that each term

m of the above sum for the partial transform depends on x only in its

complex phase,

4 m(X,k ,z) Tm(ky Z) e-imX/V; (3-22)

the source transform,

iV 3 2 -
T (k ,Z) = c k(l - c gm/v )- m(Z) & (z), (3-23)
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can be computed and tabulated as a function of k from the dispersion
y

data and eigenfunction amplitudes. A corresponding table of complex

* phases

iA
SI ~ ~~can be similarly, prepared, after which eachi• lsilyyreatdopexulilains •. can be generated recur-

?m(o,kyZ) =
m y

C +(x 4. Ax,kY,) C m (x,k yz) e-imAx/v; (3-24)

at each step the sum

4(xk z) Re , (xkyZ) (3-25)

briefly tabulated as a function of k , can be Fourier-transformed to

y
produce C (x,y,z).

Field quantities other than displacement, such as scalar strain,

strain rate, and horizontal velocity, can be deduced from the simple

relations among the Fourier amplitudes derivable from the dynamical

equations (3-1 through 3-4):
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strain,

strain rate, et -i•c

(3-26)
wk

velocity, u
k2

A17 -- 2-• •

For completeness, the appropriately modified formulas for the source

transforms are listed below:

T
Quantity M

Lin

{ V cm3 k(i- mcgc/V 2)-i ým(Z) ým(zo

t vm mgm i i 0

EVv c k2 (1r - cmcgm/V2- ým(Z) ýM'm(Zo) (3-27)

"iViv 5 2v)-l'm
u -- c k(l - c c v27I4  Z ( Qz

-- * "ik V 4  2-1/2. __x c] C /V - r(Z) ýM (Zo)

y kn gin m gm o

The bracketed quantity [ik y/k] is held outeide the sum in Equation 3-25.
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SECTION 4. WAKE-GENERATED WAVES

4.1 INERT MIXED WAKE

The mixing that occurs within the momentumless wake of a self-propelled

body tends to establish a more nearly uniform density in the wake than in

the surrounding stratified fluid. Internal waves are radiated as the

mixed wake collapses slightly to bring the internal and external density

surfaces into level. For radiated component§ whose wavelength is longer

than the wake diameter, the effect of collapse can be reasonably well

represented by a time-dependent dieplacement quadrupole in the crossplane.

To incorporate wake radiation into the present transform algorithm,

one approach would be to model the wake collapse separately, either

analytically or numerically [7,8] and use the corresponding quadrupole

profiles as an additional source term.

A much simpler, though not yet validated, approach has been used

in the present version of XMODE. It uses a single parameter in the form

of an initial quadrupole strength, and virtually generates the entire

quadrupole history in a self-consistent dynamical way as the radiation

field develops.

The inert mixed wake, in its simplest conception, is a tube of fluid

which, at a suitable short distance behind the self-propelled body, has

an anomalous density gradient within an approximately circular cross-

section, no mean flow perpendicular to the axis, and in which turbulent

stresses can be neglected in comparison to buoyant forces and inertia

in the equations of crossnlane flow. This last assumption means that

the dynamics of collapse are adequately described by the homogeneout

equations of fluid motion, both inside and outside the mixed region.
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We assume that the only affect of mixing is to redistribute density

and we define a displacement function to describe the redistribution,

Aý(x Py S'Z-Zo0),

such that if the mixing were abruptly terminated at position x, a fluid

particle on the streamline originally at level z would rise or fall to the

new equilibrium level z+A;. Thus, if the streamline is at the level z+ý,

the particle experiences an acceleration due to buoyancy -N2(C-A). The

function Aý vanishes for x>o, changes rapidly in a mixing interval -X<x<o,

then remains independent of x for x<-X. The vertical momentum equation

(3-1) is accordingly modified to read

2+ - + N2(z) (g-Ag) 0, (4-1)

and following the derivation of Section 3 with the volume source s set to

zero, we get

( + )- + N2 V' =N (4-2)

where again the steady solution obeys = v2 (/ax) 2 C. For simplicity

we assume that the turbulent redistribution of density occurs rapidly

enough compared to the time scales {w l to be approximated by impul-
sive change,

0, x >0

A4 =(4-3)

A(y, z - z 0), x < 0,

which gives the source term in (4-2) the form

N2 (x) a 2  x
ay A]
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where n(x) is unity for x < 0 and zerc for x > 0. The two-dimensional

Fourier transform of this equation is

2- 2~ 2 (1~i
a i2 + k 1) N + ikx M(y z z)

iJ az--f - =k-z-z°

or,

+ k -- 2 N= N2k2 ý(k, z - (4-4)"" k ik w2 Zo)"

x

In terms of the Green's Function in (3-12), the solution is

H
S= -- fk, (z, zl )•(ky• zI - zo) dzI

ii x

i m (4-5)
i2 2 ým(z) Qm(zo)'Sikx m - wm

L•
with

"Q"n(zo) =-f mZN(z)N 2 (Z)(kZ - z) dz. (4-6)

Now for a range of wavenumbers k and mode numbers m such that the spatial

"y
scales of the plane-wave normal modes are mu,:h layger than the wake radius R,
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k R < 1,

ymR< Za

the coefficients above are approximately

Qm= (z )N (z)f(z° z)A(y,z- zo) dydz

!•' N2
•"~ --- ,(Zo)N (zolA, (4-7)

where the integral Q defines the wake quadrupole moment. This approxi-

mation assumes also that the ambient Vaisala frequency is constant over

the wake height and that the wake is axisymmetric so that

JffA dxdy 0.

The solution transform is thus

22
QN (z) (

?(i-fz) 0- m 2 (Z)(m(zo (4-8)
X Wn O - W m

The partial inversion of Section 3.3 yields the crosstrack transform

1 2 o (1 -c c /V 2)- (z) 0' (z) e:i;°mx/v

•(X~kyZ) QN i gm in o 0

(4-9)
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the sum again including both signs of iwm. This sum, representing the

raoiated field,, does not include the residue of the singularity at k 0,
x

which merely reprcduces the impulsive density jump AC inside the wake at x = 0.

The source transforms T generated by the quadrtipole wake are
m

accordingly

Q ua antt y m

QN 2

Li

E: -QN2 (1 - c c /V 2 (Z (z
7 0 gmvm m m 0

tJ -QN 0i•(1 - cmCP.cm/V2)-l (z) 1(Zo

2
u-QNi im(1 - c c /V .- ,(z) 4'(z) (4-10)

o gm m/ m m o

-Q 2 m mlc, v 2)- ým(Z) ým (Zo)I us QNt -h inet 2-1 mo

[ik 2- , ~
i]"Uy *-QNo @ im (1- _ cgm/v2)- C~(Z), ¢m (o)

4.2 SIZING THE QUADRUPOLE MOMENT

-' For a considerable range of horizontal and vertical wavenumber the

S• radiatton emanating from a collapsing wake is seen to be determined by a

single constant, the kinematic quadrupole moment

Q =•f (z° - z) A(y, z - zo) dzdy. (4-11)
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The magnitude of this quantity depends both on the cross section of the

mixed wake and on the degree of mixing, as reflected by the density level

displacements A. There is probably no simple substitute for a complete

finite-difference simulation of the turbulent dynamics of wake growth

and collapse in stratified media if accurate values of Q are essential.

However, certain bounding approximations can be made in anticipation of

tl:ese more accurate simulations, and a quadrupole formula based on these

approximations has been included in the XMODE algorithm.

The estimate derived below is based in an elementary way on the

dynamical picture of a growing, momentumless wake given by Ko [9], with

constants drawn from the measurements of Naudascher and Gran [10,11].

The procedure will be to assume that in the initial growth stage the density

is turbulently diffused like a passive variable, and that the consequent

growth in the quadrupole moment continues until the effects of stratifi-

cation intervene rather abruptly at about one-fourth of the local Vaisala

period. In Ko's account of non-stratified growth, the wake radius R

and turbulent velocity scale u' depend on time, or downtrack coordinate

x, according to

1/

R r x/

(4-12)

u' V x 3/4

with a Reynolds stress that is given by an eddy diffusivity

c = K u'R (4-13)C

that is constant across the wake. In Gran's measurements this assumption

is verified, although the exponents in (4-12) are modified very slightly

by the effects of propeller-induced swirl. Gran's measurements also
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verify another assumption of Ko's, that the wake entrainment rate

FR vdR/dx is proportional to u',

R = K Iu'. (4-14)

To define the density distribution inside the growing wake we will neglect

the effect of swirl and we will suppose, following a Reynolds' analogy,

that the diffusion of the passive quantity p is governed by the eddy

diffusivity E,

i •-2+ v.(EvP) = 0 (4-15)
Sax

with a boundary condition that equates the normal flux of p across the

expanding wake perimeter at R:

ap4R + c - = P (4-16)
pi+ n 0

where u is the mean longitudinal flow and the subscripts (i,o) mean

"inside and outside the wake perimeter. The outside density profile is

assumed linear,

Po P (zo) - B(z - zo). (4-17)

These equations have the remarkably simple solution

Pi = PO(z) - a(z - zo), (4-18)

as pointed out by Fernandez [12], since e depends only on x but

api/Dx 0 so that (4-15) is satisfied, while the boundary condition becomes
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11!

a(RcosO) Kpu' + K u'R(acos8) -(Rcose)Kpu'

where 0 is the polar angle with z - z 0 RcosO, the condition is everywhere

satisfied when

a(K1 + K) = 8K1 ' (4-19)

This argument suggests that the growing, non-radiating wake maintains a

constant internal density gradient whose value is smaller than the external

gradient by an amount that depends quite reasonably on the ratio of

entrainment constant K1 to eddy diffusion constant KV.

The displacements A in density surface levels inside the wake are

iimnediately given by

a(Z z K(z - z ) + A],

or

$- 1(z - z ). (4-20)
8 0

The quantity (8 - c)/8 E is a measure of the mixing efficiency,

A = -E(z - z )

K (4-21)

K1 + K

such that E tends to unity for K > K and to zero for K I K0
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TLe kinematic quadrupole moment (4-11) is readily found to ;,e

TR4

Q = -•-E, (4-22)

1/4
which is seen to grow linearly with time in view of the x -dependence

of R. The value for R taken from Gran's results for a streamlined

body-and-propeller model of radius Rb yields
J

R4  Ro .213(

whereRo = 1.19 Rb is the value at x = 12 R b and x° is a virtual origin

a short distance (2.6 Rb) in front of the propeller. Assuming that

quadrupole growth terminates abruptly after some fraction f of the

Vaisala period, when

x -x f .27rv
o N'

0

we get for the maximum quadrupole

3Q 0.26 ERb v/N0 . (4-23)

This is the formula implemented in the SOURCE module, with the mixing

efficiency E as a variable iriput parameter, and with the number f taken as

2 0.25. The appropriate value of E can be inferred from formula (4-21);

values of K1 and K taken by Ko from Naudascher's measurements, and

computed by Gran from his own data (13], yield roughly similar values

of E:
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Gran Naudascher

Ke 0.16 0.18

K1  2.3 2.25

E 0.064 0.074

Both values of E are small enough to suggest that the actual mixing tha

occurs in a propeller wake may be dominated, by gross convection due to

swirl. Gran remarks that a core of the wake extending out to 0.25 R

remains in solid body rotation and attains 0.8 revolutions after 20 body

diameters. If the portion out to 0.5 R were completely mixed, the

equivalent added mixing efficiency would be on the order of (0.5) =

0.0625.

4.3 TREATMENT OF HIGHER MODES

The approximation (4-7) for the mode-dependent quadrupole

coefficients (4- 6) overemphasizes the higher modes and higher wave-

numbers by treating the source like a point quadrupole singularly in

the crossplane. The normalized mode product m'4' appearing in the source
m m

transform formulas for strain, velocity, and strain rate is oa the

average an increasing function of m, of order

2

2. dz= ý,Pm
mNm Pm

where one defines a vertical wavenumber pm by

Pm m

and a mode-averaged N2 by

1 2 f2 d N'dz 1.
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One can easily derive from the normal-mode equation (3-10) the relation

.2 2 -2 2
S+ Pm cm N , (4-24)

so that the wake-generated source transforms for strain,

i T(wake) n QN2ocm-2  M)

m

tend to grow without mode limit. The extra factor c mk in the body-
generated source transforms attenuates these functions at higher mode

numbers. This behavior is evident in the body-dominated and wake-dominated

cases illustrated in Figures 2-5 and 2-6

The actual wake excitation coefficients defined in equation (4-6)

will diminish with increasing k and m at a point where the scale of the

mode function becomes comparable to the maximum wake radius R. A simpleH
form factor to simulate this effect qualitatively has been included in

the wake transform algorithm,

1 + 0.4 q2 R2 (4-25
m

where q is a total wavenumber defined by

2 2 2
qm =k + Pro (4-26)

and computed very simply from quantities on hand by formula (4-24) above.

41



REFERENCES

1. M. Milder, User's Manual for the Computer ZMODE, R & D Associates,

Report TR-2701-001, July 1973.

2. G. Carrier and A. Chen, Internal Waves Produced by an Underwater
Vehicle, TRW, Inc., Report No. 18202-6001-RO-00, November 1971.

3. C. W. Hirt and D. R. S. Ko, personal communication.

4. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Computation
of Complex Fourier Series," Math. of Corm., Vol. 19, April 1965,
pp. 297-301.

5. J. W. Miles, "Internal Waves Generated by a Horizontally Moving
Source," Geo. Flaid Dynamics, Vol. 2, 1971, pp. 63-87.

L 6. 0. Phillips, The Dyamics of the Upper Ocean, Cambridge University
Press, 1969, pp. 164-165.

: 7. D. R. S. Ko, Collapse of a Turbulent Wake in a Stratified Medium,

TRW, Inc., Report 18202-6001-R0-00, Vol. II, November 1971.

8. S. A. Piacsek, NRL Reporr pending.

9. D. R. S. Ko, A Phenomenological Model for the Momentumless Turbulent
Wake in a Stratified Medium, TRW, Inc., Report 20086-6007-RU-00,
April 1973.

10. E. Naudascher, "Flow in the Wake of Self-Propelled Bodies and Related
Sources of Turbulence, JFM, Vol. 22, 1965, pp. 625-656.

11. R. L. Gran, An Experiment on the Wake of a Slender Propeller-Driven
Body, TRW, Inc., Report 20086-6006-RU-00, June 1973.

12. F. L. Fernandez, R & D Associates, personal communication.

13. R. L. Gran, Flow Research, Inc., personal communication.

43


